

FutureGuide[™]-LWP plus-200

Compliant with ITU-T G.657.A1 / G.652.D

We offer the FutureGuideTM-LWP plus-200 optical fiber with a coating diameter of 200 μm. This fiber has been designed to maintain a mode field diameter (MFD) of 9.2 μm at 1310 nm, with tolerable macrobend performance exceeding ITU-T G.657.A1. This is made possible by Fujikura's innovative optical fiber coating technology, and the fiber's ITU-T G.652.D compliant low (zero) water peak attenuation supports full-band transmission (O, E, S, C, and L-band).

FutureGuideTM-LWP plus-200 helps not only designing high-density (e.g. higher fiber count and smaller diameter) optical fiber cables but also saving costs of manufacturing, transporting and installing cables. Furthermore, its compatible MFD with conventional ITU-T G.652 fibers would realize deployment of new cables into existing networks without any troubles.

Features

- Reduced coating diameter down to 200 µm with maintaining equivalent performance as 250 µm fibers.
- Reduced attenuation characteristics compared MFD compatibility with conventional G.652 fibers.
- Improved macrobending performance exceeding ITU-T G.657.A1.

Customer's advantages

- Realizes aggressive design for higher-density cable. (e.g. reduced-diameter and/or high fibercount cables)
- Helps efficient deployment and replacement of cables into existing networks.
- Saves enclosing space at the point of connecting cables. Reduces momentary interruption during connecting work.

Optical Characteristics

Attenuation		
Attenuation coefficient at 1310 nm	≤ 0.34 dB/km	
Attenuation coefficient at 1383 nm	≤ 0.34 dB/km * 1	
Attenuation coefficient at 1550 nm	≤ 0.20 dB/km	
Attenuation coefficient at 1625 nm	≤ 0.22 dB/km	
Attenuation vs. wavelength *2		
1285 – 1330 nm ref. λ of 1310 nm	α ≤ 0.03 dB/km	
1525 – 1575 nm ref. λ of 1550 nm	$\alpha \leq 0.02 \text{ dB/km}$	
Macro-bending loss		
Ø =50 mm, 100 turns at 1310, 1550, 1625 nm	≤ 0.01 dB	
Ø =30 mm, 10 turns at 1550 nm	≤ 0.05 dB	
Ø =30 mm, 10 turns at 1625 nm	≤ 0.30 dB	
Ø =20 mm, 1 turn at 1550 nm	≤ 0.50 dB	
Ø =20 mm, 1 turn at 1625 nm	≤ 1.5 dB	
Point discontinuity at 1310 nm	≤ 0.05 dB	
Point discontinuity at 1550 nm	≤ 0.05 dB	

Cut off wavelength		
Cable cut-off wavelength	≤ 1260 nm	
Chromatic dispersion		
Chromatic dispersion coefficient at 1285-1330 nm	≤ 3.5 ps/(nm·km)	
Chromatic dispersion coefficient at 1550 nm	13.3 - 18 ps/(nm·km)	
Chromatic dispersion coefficient at 1625 nm	17.2 - 22 ps/(nm·km)	
Zero-dispersion wavelength	1300 - 1324 nm	
Zero-dispersion slope	0.073 - 0.092 ps/(nm ² ·km)	
Polarization mode dispersion (PMD) *3		
Uncabled fiber PMD coefficient	≤ 0.1 ps/√km	
Link design value PMD _Q	≤ 0.06 ps/√km	

- *1. The attenuation at 1383nm after hydrogen aging in accordance with IEC60793-2-50
- *2. The attenuation within the specified wavelength range is limited to a difference of α or less compared to the reference wavelength (ref. λ).
- *3. This characteristic is guaranteed only in a virtually tension-free condition.

Structural Characteristics

Mode field diameter at 1310 nm	9.2 ± 0.4 μm
Mode field diameter at 1550 nm	10.4 ± 0.5 μm
Cladding diameter	125.0 ± 0.7 μm
Coating diameter (colored only)	190 - 210 μm
Core concentricity error	≤ 0.5 µm
Cladding non-circularity	≤ 0.7 %
Coating-Cladding concentricity	≤ 10 µm
Fiber curl radius	≥ 4.0 m

Mechanical Characteristics

Proof test *4	≥ 1 % (100 kpsi or 0.7 GPa)
Dynamic stress corrosion susceptibility parameter (n _d)	≥ 20
Coating strippability F	$0.4 \text{ N} \le F \le 8.9 \text{ N}$
Length (colored only)	Up to 50.4 km

^{*4.} The product is subjected to tensile testing throughout its entire length.

Environmental Characteristics

	Attenuation Change at 1310, 1550, 1625 nm
Temperature dependence - 60 to 85 °C	≤ 0.05 dB/km Ref. temp. 23 °C
Temperature Humidity Cycling -10 °C to +85 °C up to 98 % R.H.	≤ 0.05 dB/km Ref. temp. 23 °C
Water immersion at 23 °C ± 2 °C	≤ 0.05 dB/km
Dry heat at 85 °C ± 2 °C	≤ 0.05 dB/km Ref. temp. 23 °C
Damp Heat 85 °C at 85 %R.H.	≤ 0.05 dB/km Ref. temp. 23 °C

Performance Characteristics

	Typical value
Attenuation coefficient at 1490 nm	0.21 dB/km
Zero dispersion wavelength	1311 nm
Zero dispersion slope	0.088 ps/(nm ² ·km)
Effective group index of refraction Neff at 1310 nm	1.4675
Effective group index of refraction Neff at 1550 nm	1.4681
Effective group index of refraction Neff at 1625 nm	1.4685

Note: This document is published for your reference purpose only and the specifications for commercial purpose will be issued upon agreement with customers.

Note: If you require more detailed information, please contact us by scanning the QR code below.

